Course Code: English Course Title:	GSn_008 (SwedNess), TBD (KTH) Engineering Materials Science using Neutrons and Synchrotron X-rays				
Svenskt Kursnamn: Credits:	Neutron och synkrotronkarakterisering för materialteknik 5 hp				
Educational Level:	Third Cycle				
Subject Area:	Neutron Scattering				
Grade Scale:	Pass/Fail				

Learning Outcomes

After completing the course, the student should have

- Understanding of working principles of the presented neutron and synchrotron techniques
- Knowledge of the general data acquisition procedures, preliminary data analysis and main error sources
- Understanding of the uniqueness and limitation of these neutron and synchrotron techniques in comparison with other complementary techniques
- General knowledge of how these techniques can be applied to engineering materials and problems

Course Main Content

The course deals with the following applications of scattering techniques in the field of engineering materials science: Phase and texture analysis by neutron and synchrotron x-ray diffraction, Residual stress determination by neutron and synchrotron x-ray diffraction, Neutron and synchrotron x-ray small angle scattering and imaging for engineering materials.

The related neutron and synchrotron techniques will be presented with focus on the working principle, instrumentation, data acquisition and analysis, and application examples related to engineering materials and problems.

The course consists of lectures, practical measurements at PETRA III P21.2, practical data analysis exercises, and assignments.

Preliminary schedule

Date	Content	Place	8:15-	10:15-	13:15-15:00	15:15-
			10:00	12:00		17:00
May	Diffraction:	KTH and		Lecture 1	Lecture 2	Lecture 3
20	phase and	online				
	texture					
May	Diffraction:		Lecture 4	Lecture 5	Lecture 5	<mark>Assignment</mark>
21	residual					
	<mark>stress</mark>					
May	Diffraction:		Lecture 6	Lecture 7	Lecture 8	Lecture 9
22	residual					
	stress; and					
	SAS					
May	Imaging		Lecture 10	Lecture 11		
23						
June 3	Practical	DESY	Diffraction		Diffraction	
	Diffraction		measurements for		measurements for	
			phases and texture		residual stress	
June 4	Practical		SAS measurements		Imaging measurements	
	SAS/imaging					
June 5	Practical data		Diffraction data analysis		SAS/imaging data analysis	
	analysis					

Teaching Language: English

Eligibility/Prerequisites

Primary:PhD students in activities related to SwedNess, CeXS, NEXTSecondary:Other PhD students at Swedish/Nordic institutions

Prior knowledge in powder diffraction is useful.

Literature

- Course book: Neutrons and Synchrotron Radiation in Engineering Materials Science from Fundamentals to Applications, by Peter Staron, Andreas Schreyer, Helmut Clemens, and Svea Mayer. 2nd Ed. WILEY-VCH, Verlag GmbH & Co. KGaA, 2017
- Suggested books for further reading:
 - Residual Stress Measurement by Diffraction and Interpretation by I.C. Noyan and J. B. Cohen, Springer – Verlag
 - o Introduction to texture analysis
- Selected articles

Lecturers

Peter Hedström, KTH Magnus Hörnqvist Colliander, CTH Invited lecturers

Examination

Hand-in assignments Lab reports

Grading Scale: Pass/Fail

Requirements for final grade

Approved assignments and lab reports

Credits

5 credits for participation in all parts and completion of all the course work.

Contact and examiner

Peter Hedström

<u>pheds@kth.se</u>